问题

问题1692: The area of the uniform cross section of a prism



The area of the uniform cross section of a prism with the volume of 180 em^3 is 24 cm. Calculate the height, in cm, of the prism.

已解决 · 小学数学
提问于6月19日 · 阅读 1271

解答

Let's solve the problem step by step.

Given:

  • Volume of the prism, \( V = 180 \text{cm}^3 \)
  • Area of the uniform cross section, \( A = 24 \text{cm}^2 \)

We need to find the height \( h \) of the prism.

The formula for the volume of a prism is:
\[
V = A \times h
\]
where:

  • \( V \) is the volume,
  • \( A \) is the area of the cross section,
  • \( h \) is the height.

We can rearrange this formula to solve for \( h \):
\[
h = \frac{V}{A}
\]

Now, substitute the given values:
\[
h = \frac{180}{24}
\]

Calculate the division:
\[
h = 7.5
\]

Therefore, the height of the prism is \( 7.5 \text{cm} \).

\[
\boxed{7.5}
\]


添加微信可以更快获取解答

最后修改于2天前

添加新讨论

提交新的问题
点此拍照题目

前一篇:问题1691: 日期计算

下一篇:问题1695: (3)在菱形ABCD中,CA=120°,AB=3V2.若点P在射线CD

相关文章