Let's evaluate each expression step by step:
(1) \((-2)^2 \times (+5)^2\)
- \((-2)^2 = 4\) (since negative squared is positive)
- \((+5)^2 = 25\)
- So, \(4 \times 25 = 100\)
Answer: \(\boxed{100}\)
(2) \((-2)^3 \times (+5)^2\)
- \((-2)^3 = -8\) (negative cubed is negative)
- \((+5)^2 = 25\)
- So, \(-8 \times 25 = -200\)
Answer: \(\boxed{-200}\)
(3) \((-2)^2 \times (+5)^3\)
- \((-2)^2 = 4\)
- \((+5)^3 = 125\)
- So, \(4 \times 125 = 500\)
Answer: \(\boxed{500}\)
(4) \((-2)^6 \times (-2)\)
- \((-2)^6 = 64\) (even exponent gives positive)
- \((-2) = -2\)
- So, \(64 \times (-2) = -128\)
Answer: \(\boxed{-128}\)
(5) \(\left( -\frac{1}{3} \right)^5 \times (-3)^5\)
- \(\left( -\frac{1}{3} \right)^5 = -\frac{1}{243}\) (odd exponent gives negative)
- \((-3)^5 = -243\) (odd exponent gives negative)
- So, \(-\frac{1}{243} \times (-243) = \frac{243}{243} = 1\)
Answer: \(\boxed{1}\)
(6) \(\left( -\frac{1}{2} \right)^6 \times (-2)^8\)
- \(\left( -\frac{1}{2} \right)^6 = \frac{1}{64}\) (even exponent gives positive)
- \((-2)^8 = 256\) (even exponent gives positive)
- So, \(\frac{1}{64} \times 256 = \frac{256}{64} = 4\)
Answer: \(\boxed{4}\)
(7) \(\left( -1 \frac{1}{2} \right)^2 \times \left( -\frac{2}{3} \right)^3\)
- Convert mixed number: \(-1 \frac{1}{2} = -\frac{3}{2}\)
- \(\left( -\frac{3}{2} \right)^2 = \frac{9}{4}\) (even exponent gives positive)
- \(\left( -\frac{2}{3} \right)^3 = -\frac{8}{27}\) (odd exponent gives negative)
- So, \(\frac{9}{4} \times \left(-\frac{8}{27}\right) = -\frac{72}{108} = -\frac{2}{3}\) (simplify: divide numerator and denominator by 36)
Answer: \(\boxed{-\frac{2}{3}}\)
(8) \(\left( -1 \frac{1}{2} \right)^3 \times \left( -\frac{2}{3} \right)^4\)
- Convert mixed number: \(-1 \frac{1}{2} = -\frac{3}{2}\)
- \(\left( -\frac{3}{2} \right)^3 = -\frac{27}{8}\) (odd exponent gives negative)
- \(\left( -\frac{2}{3} \right)^4 = \frac{16}{81}\) (even exponent gives positive)
- So, \(-\frac{27}{8} \times \frac{16}{81} = -\frac{432}{648} = -\frac{2}{3}\) (simplify: divide numerator and denominator by 216)
Answer: \(\boxed{-\frac{2}{3}}\)
Summary of Answers:
- \(\boxed{100}\)
- \(\boxed{-200}\)
- \(\boxed{500}\)
- \(\boxed{-128}\)
- \(\boxed{1}\)
- \(\boxed{4}\)
- \(\boxed{-\frac{2}{3}}\)
- \(\boxed{-\frac{2}{3}}\)
添加微信
可以更快获取解答
最后修改于昨天 16:14