Let the two numbers be $x$ and $y$.
Find pairs of numbers by substituting values of $y$:
Describe the pattern:
- If we have a number $y$, the corresponding number $x$ that satisfies $x - y=\frac{x}{y}$ is given by $x=\frac{y^{2}}{y - 1}$, where $y\neq1$.
- We can rewrite $x$ as follows: $x=\frac{y^{2}-y + y}{y - 1}=\frac{y(y - 1)+y}{y - 1}=y+\frac{y}{y - 1}$.
- The pairs of numbers $(x,y)$ where $x=\frac{y^{2}}{y - 1}$ ($y\neq1$) all satisfy the property that their difference $x - y$ is equal to their quotient $\frac{x}{y}$. For example, when $y$ is an integer greater than 1, $x$ is a non - integer fraction. When $y$ is a fraction, $x$ can be either an integer or a fraction depending on the value of $y$.
So, some pairs of numbers with the given property are $(\frac{16}{3},4)$, $(\frac{25}{4},5)$, $(\frac{9}{2},3)$, and in general, for $y\neq1$, the pair $(\frac{y^{2}}{y - 1},y)$ satisfies the property that $\frac{y^{2}}{y - 1}-y=\frac{\frac{y^{2}}{y - 1}}{y}$.
添加微信
可以更快获取解答(请注明有偿答疑)
最后修改于4月16日